
Fast Bandit-based Policy Adaptation in Diverse Environments

Ziyi Zhang and Guannan Qu and Yorie Nakahira

Abstract— Autonomous systems must have the ability to
quickly adapt to various situations. However, adaptation meth-
ods often require strong assumptions about system structures,
environmental homogeneity, and multiple rollouts. In this work,
we integrate multi-armed bandit and model-based RL to design
a fast adaptation algorithm on a single trajectory. Our approach
achieves sublinear regret of O(

√
T), and the performance

guarantee does not require homogeneity of the environment.
This regret bound is achieved using a novel prediction error
metric that is minimized in the ground-truth MDP. To the best
of our knowledge, all existing results with provable guarantees
depend on the Bregman divergence between the optimal policies
among the MDP’s. We show by simulation that our algorithm
performs well in puzzle navigation and quadcopter path-
tracking.

I. INTRODUCTION

Rapid adaptation to environmental changes is essential in
planning and control problems. Practical problems, such as
autonomous vehicles [1], power systems [2], and robotics,
may require a given system to rapidly adapt to an unknown
environment, such as a sudden change in road conditions or
power demand, respectively. Those changes in environments
may require significant changes in policies than what is cur-
rently deployed. Furthermore, these problems often require
the adaptation to be done on a single trajectory, as multiple
rollouts might be costly and impractical.

Motivated by such needs, many adaptive control methods
have been developed [3]. Those methods usually adjust
control actions in real-time by augmenting the state space
with conditional distribution for uncertain system parameters.
Some identify system parameters [4] or analyze the relation-
ship between the error in open-loop system identification
and the error in closed-loop system control/prediction [5],
[6]. Most adaptive control techniques require certain system
structures to ensure convergence and do not work in a general
MDP setting and focus mainly on stabilization. On the
other hand, online switching control has gained much suc-
cess [7], [8] recently. Online switching control often works
in more general systems and can handle non-continuous
uncertainty [9] and hybrid systems [10]. However, most
works in online switching control also focus on stabilization
and can not optimize on a user-defined cost.

Learning-to-learn and meta-learning have also been de-
veloped to perform fast adaption [11]. Some use gradient-
based approaches, which improves learning performance by
tuning parameters of a gradient-based update, either on an

Ziyi Zhang, Guannan Qu, Yorie Nakahira are with Electrical
and Computer Engineering, Carnegie Mellon University, 5000
Forbes Ave, Pittsburgh, PA 15213, USA {ziyizhan, gqu,
ynakahir}@andrew.cmu.edu

offline dataset [12] or during online training on a single
task [13]. While some methods guarantee local convergence
or stepwise improvement [14], [15], it is also generally diffi-
cult to achieve global convergence/regret. One notable work
with a global convergence guarantee is [16], which offers
a sublinear convergence guarantee on a convex objective
function. The regret bound depends linearly on the Bregman
divergence among the optimal policies, which would be large
if the optimal policies are far apart from each other.

Other approaches directly use the difference between
different Markov decision processes (MDPs), such as the
Q functions or the transitional probability, to identify the
ground-truth MDP and optimize the task during online
training [17], [18]. For instance, [17] introduced an algorithm
for meta-learning based on hierarchical RL [17]. Their work
offers an algorithm that takes advantage of the latent hier-
archical structure of MDPs. In a tabular setting, the latent
hierarchical structure requires the MDPs to have identical
dynamics except for a finite number of state-action pairs.
Their work provides a bound on the number of samples
needed to determine the set of exits in the ground-truth MDP.
However, their work also requires multiple rollouts and needs
the MDP’s to have similar control tasks.

A. Contribution

In this work, we study the problem of quickly determining
the optimal policy on a single trajectory in diverse environ-
ments.

• Our work proposes an algorithm for online policy adap-
tation in diverse environments on a single trajectory. By
using a carefully designed prediction error, the proposed
algorithm takes advantage of the differences among
reward functions and transitional probabilities of the
MDP’s and quickly identifies the ground-truth MDP and
is not confined to stabilization problems.

• Our algorithm achieves a provable sublinear regret with
respect to the time horizon. Critically, our regret bound
does not depend on the Bregman divergence of the op-
timal policies and the differences among the dynamics
of the MDPs.

• We show by simulation that the proposed algorithm
performs well in both navigation problems and quad-
copter path tracking. In the puzzle navigation problem,
the proposed algorithm generates very small regret.
In the quadcopter path-tracking problem, compared to
naively using the EXP3 algorithm on cost or reward
as in previous online switching control papers [19], the
proposed algorithm performs significantly better when
minimizing the prediction error we designed.

B. Related Work

Online switching control has enjoyed a long history of
study [7], [8]. There are two major types of switching
rules: model-based switching [7] and performance-based
switching [20]. Our work draws inspiration from [19], which
used EXP3 to choose the policy to minimize the cost of the
actions and guarantee finite-gain stabilization and a sublinear
regret. Most of the aforementioned works are primarily
concerned with stabilization, and when trying to optimize
cost or reward, simply run a bandit algorithm on the observed
reward, which might not take full advantage of the difference
of system dynamics in a typical MDP setting. Compared
to their work, while offering a similar regret guarantee,
our algorithm generalizes to classical MDP settings and,
therefore, can be applied to more settings than stabilization
by utilizing both reward and system dynamics.

Meta Learning is a relatively new field of study [11],
[14] and have been studied from different perspectives. For
instance, context-based offline meta-learning improves upon
previous works in offline RL and offers a new meta-learning
framework for offline RL [12]. Another work offers meta-
learning from an optimization and meta-gradient perspective
by minimizing the distance to a bootstrapped target under a
chosen (pseudo)metric, which guarantees local improvement
of meta-parameters [13]. Most work in meta-learning offers
excellent simulation performance but lacks provable guar-
antees [21], [22]. Compared to their work, our work learns
on a single trajectory and works better when the MDPs are
significantly different.

II. PROBLEM FORMULATION

We start by introducing the discrete-time finite time
horizon dynamic system, characterized by the tuple
(M,S,A, P, r,H, s0). Here M is the space of MDP. S,A
denote the discrete state space and action space, respectively.
P = {Pm(·|s, a)}(s,a)∈S×A is the collection of transition
probability measures indexed by the state-action pair (s, a)
and MDP m. The function r = {rmh (s, a)}(s,a)∈S×A is
the expected instantaneous reward, where rmh (s, a) is the
deterministic reward taking value in [0, 1] incurred by taking
action a at state s in MDP m at time step h. Lastly, H is the
time horizon, and s0 ∈ S is the initial state. Our proof also
easily generalizes to a stationary distribution µ0 of initial
states.

Before time step 0, a ground-truth MDP m∗ unknown to
the agent is fixed throughout the time horizon. The agent
has previously interacted with all potential MDP’s inM and
obtained controller πm : S × h → A with control function
in the form of πm

h (s) = a, h ∈ [H], s ∈ S, a ∈ A for all
m ∈M. We also assume that, during learning, the agent has
estimated the reward function rm and transitional probability
Pm for all m ∈ M, which is common to model-based RL
algorithms [23]. At each time step h, the agent starts at state
sh, takes action ah and observes reward rm

∗

observed,h, which
can be decomposed as follows:

rm
∗

observed,h(sh, ah) := rm
∗

h (sh, ah) + wh,

where wh is the noise in the reward when taking action a
at state s in MDP m at time step h. Here, we assume that
E[wh] = 0, so E[rm∗

observed,h] = E[rm∗

h (sh, ah)].
The goal of the agent is to determine the MDP it is

operating on by interacting with it and minimize the regret
defined as

RH = Cm∗
(πm∗

)− E

H−1∑
h=0

rm
∗

h (sh, ah)

 , (1)

where the expectation is taken over the trajectory taken
by the agent {s0, . . . , sH−1, a0, . . . , aH−1}, and Cm∗

(π) =
Eπ,m∗[∑H−1

h=0 rm
∗

h (sh, ah)
]

denotes the expected reward
when operating under policy π.

III. NOTATION

In this section, we introduce the notations that are used in
the rest of this paper. We denote that [H] := {0, 1, . . . ,H}.
We represent the positive real numbers as R+ := {x ∈ R :
x > 0} denotes the positive real space. Let Eπ,m[·] denote
the expectation taken conditioned on policy π and MDP m.
We use P(·)→ [0, 1] to denote the probability of an event.

IV. ALGORITHM DESIGN

Instead of optimizing the agent’s performance in a greedy
algorithm, we design a prediction error that is minimized
when the algorithm makes the right prediction. Therefore,
our method is able to identify the ground-truth MDP with a
bandit algorithm and achieve optimal performance.

In order for a bandit-based algorithm to work in a classical
MDP setting, we need an estimation that depends on both
probability distributions and rewards of the MDP’s and is
minimized when the expected behavior of the chosen MDP
is in accordance with the system dynamics observed by the
learner. More formally, we define

Definition 1: At time step h, given sh,ah, and the re-
ward function rmh of MDP m and the observed reward
robserved,h(sh, ah), the observation error at time step h is
defined as

ϵ̃mh :=(rm
∗

observed,h(sh, ah)− rmh (sh, ah))
2 + (1− ρm(sh+1|sh, ah)),

(2)

where ρm(sh+1|sh, ah) := Pm(sh+1|sh,ah)

∥Pm(·|sh,ah)∥
2

∈ [0, 1] is the

normalized transition probability of MDP m.
By definition, ϵ̃mh is the summation of a quadratic loss
function on the error in reward and a one-step estimation
of the transitional probability. This quantity ϵ̃mh plays an
important role in the algorithm (line 7 in Algorithm 1) and
we later show in Lemma 1 that E[ϵ̃mh] is minimized when
the algorithm makes the correct prediction.

Given the above definition, the algorithm pseudo is pro-
vided in Algorithm 1. We explain the steps of the algorithm
in detail below.

After initialization, at each time step h, we randomly select
MDP mh ∈ M from the distribution ph and obtain action
ah from the policy πmh . The agent execute ah and obtain
rm

∗

observed,h and sh+1 (Line 4-6 in Algorithm 1). The algorithm
then computes the observation error ϵ̃mh for all m ∈M (Line

Algorithm 1 EXP3 for Meta Learning

1: Fix ground-truth MDP m∗ ∈M
2: Initialize estimated gap Sm

0 = 0, p0(m) = 1
|M| for all

m ∈M.
3: for h = 1, . . . ,H do
4: Sample mh from ph.
5: Update sh+1, ah with πmh under the ground-truth

MDP m∗.
6: Update rm

∗

observed,h(sh, ah).

7: ϵ̃mh ←
(
rm

∗

observed,h(sh, ah)− rmh (sh, ah)
)2

+(
1− Pm(sh+1|sh,ah)

∥Pm(·|sh,ah)∥
2

)
8: for m ∈M do
9: Sm

h = Sm
h−1 + ϵ̃mh

10: end for
11: for m ∈M do
12: ph+1(m) ∝ exp

(
−ηSm

h

)
13: end for
14: end for

7 in Algorithm 1). We then update the cumulative error Sm
h

for all m ∈M and update ph (Line 8-13 in Algorithm 1).
The proposed algorithm achieves the convergence guaran-

tee by gradually becoming more likely to select the policy
that minimizes ϵ̃mh in expectation, which is also the optimal
controller. The key technical approach of this algorithm is
that the best controller πm for the ground-truth MDP is
the controller that minimizes the expected observation error.
We will prove this statement in Lemma 1 in Section VI.
Therefore, over time, E[Sm

h] will be minimized when m =
m∗.

V. PERFORMANCE GUARANTEE

In order to achieve a bound in theoretical guarantee, we
need the following assumption on the relative optimality of
controllers:

Assumption 1: For any two MDP’s m,m∗ ∈M,

V πm,m∗

0 (s0) ≤ V πm∗
,m∗

0 (s0)

where

V π,m
h (s) = Eπ,m

 H∑
h′=h

rmh′(sh′ , ah′)

∣∣∣∣∣∣ sh = s

 , (3)

is the value function.
Intuitively, the above assumption states that the control policy
we learned for each MDP m is relatively optimal when

operating on m compared to any controller learned from
other MDPs.

We also need an assumption on a bound on the reward
function, which can be easily generalized to settings with
sub-Gaussian noise.

Assumption 2: There exists constant C such that noise
|wh| < C for all h ∈ [H] almost surely. Moreover, and wh is
i.i.d for all h ∈ [H], independent from the other randomness
in the algorithm, and E[wh] = 0.

In order to bound the regret generated by each incorrectly
predicted mh, we need the following bound on the advantage
function:

Assumption 3: There exists d ∈ R+, such that the advan-
tage function A satisfy that

Aπm∗
,m∗

h (sh, ah) := Qπm∗
,m∗

h (sh, ah)−V πm∗
,m∗

h (sh) ≥ −d
(4)

for all (sh, ah, h) ∈ S ×A× [H], where

Qπ,m
h (s, a) = Eπ,m

 H∑
h′=h

rmh (sh′ , ah′)

∣∣∣∣∣∣ sh = s, ah = a

 ,

(5)
is the Q function. We may omit π if we assume the agent is
operating on the optimal policy.

The above assumption is reasonable in a number of
scenarios. For example, in a maze system with a stationary
reward, the object of control can move up and down, left
and right, which, when paired, has a 0 net effect. Since the
reward is upper bounded by 1 at each time step, we have
V πm∗

,m∗

h (sh) ≤ V πm∗
,m∗

h+2 (sh) + 2, because if the agent
makes a wrong move, it can immediately move back and
lose at most 2 points in cumulative reward. Therefore, the
MDP would satisfy

Aπm∗
,m∗

h (sh, ah) = Qπm∗
,m∗

h (sh, ah)− V πm∗
,m∗

h (sh)

≥ Qπm∗
,m∗

h (sh, ah)− V πm∗
,m∗

h+2 (sh)− 2 ≥ −2,

where we used Qπm∗
,m∗

h (sh, ah)− V πm∗
,m∗

h+2 (sh) ≥ 0, as in
the case of maze and puzzle, the agent can always step back
to the original square in two steps.

Another example that satisfies the above assumption is
when the MDP is irreducible and aperiodic under the optimal
policy, which is a common assumption in many papers [24],
[25]. Please see Proposition 1 in Appendix D for a detailed
explanation.

Lastly, since we are using reward deviation and difference
of transitional probability to estimate the accuracy of MDP
prediction, we need the following assumption to get a fixed
regret bound:

Assumption 4: We assume that at each step the prediction
makes a mistake such that ah = πmh

h (sh) ̸= πm∗

h (sh), the
reward or probability transition has a minimal deviation from
the ground truth MDP. For all (sh, ah, h) ∈ S × A × [H],
MDP m ̸= m∗ and policy π,∣∣∣rmh (sh, ah)− rm

∗

h (sh, ah)
∣∣∣2

+
〈
Pm∗

(·|sh, ah), ρm
∗
(·|sh, ah)− ρm(·|sh, ah)

〉
> c2,

(6)

for some constant c.
In particular, if the MDP’s are significantly apart, c2 defined
in Assumption 4 would increase, improving the bound in
Theorem 1. Assumption 4 is satisfied in many classical
control problems, such as quadcopter stabilization, as we will
show in Section VII-B. Even for MDP’s that do not satisfy
Assumption 4, the proposed algorithm works reasonably
well, as shown in simulation in Section VII-A.

Under the above assumptions, we have the following
sublinear bound for the regret:

Theorem 1: Given Assumption 1, Assumption 2, Assump-
tion 3, and Assumption 4,, the total regret bound of reward
is bounded as

RH ≤
2d

c2
(5 + 4C + C2)

√
H log |M|

This bound is sublinear in H and |M|. In contrast to [16], our
bound does not depend on the Bregman divergence between
policies. Therefore, our approach achieves smaller regret
regardless of the MDP’s similarity. We also demonstrate this
in experiments in Section VII.

VI. PROOF OUTLINE

In this section, we briefly introduce the three steps to prove
Theorem 1. In step 1, we show that the observation error in
(2) is an unbiased estimator of the true regret, and that the
expectation of ϵ̃mh is minimized when m = m∗. In step 2,
we upper bound the regret in observation error ϵ̃. In step 3,
we transfer the regret in observation error back to regret in
RH . The full proof can be found in the Appendix.

Step 1. First, we show that ϵ̃mh is an unbiased observation
error, and ϵ̃mh = 0 when m = m∗.

Lemma 1: The expectation of observation error is mini-
mized with m = m∗, i.e.,

m∗ = arg min
m∈M

E[ϵ̃mh].

The full proof of the Lemma 1 can be found in Appendix A.
With Lemma 1, we establish that by minimizing the obser-
vation error ϵ̃mh , we ensure that the policy we pick is the
optimal policy in the given set of controllers. In the next

step, we offer a bound on the regret regarding the cumulative
observation error.

Step 2. In step 2, we bound the cumulative observation
error in ϵ̃.

Sm
h =

h∑
h′=1

ϵ̃mh′ . (7)

which we calculated in line 9 of Algorithm 1. Recall m∗

is the ground-truth MDP, the expected ϵ̃-error bound RH is
defined as

RH =

 H∑
h=0

ϵ̃mh

h

− Sm∗

H . (8)

In the following theorem, we upper bound the expected
cumulative observation error.

Theorem 2: Given Assumption 1, Assumption 2, Assump-
tion 3, and Assumption 4, for η =

√
log |M|

(2+C+C2)H , our
adaptation algorithm has an expected ϵ̃-error regret bound
of

E [RH] ≤ 2(5 + 4C + C2)
√
H log |M|.

We obtain the above theorem by following a similar proof
structure to the EXP3 method. The advantage of the above
bound is that, given Assumption 4, we can simultaneously
evaluate all policies regardless of which policy we pick at any
time step. The detailed proof can be found in Appendix B.

Step 3. In the last step, we convert the bound on RH to
a bound on RH . We follow two steps. First, we bound the
expected number of non-optimal actions from RH . Then,
we use the bound on the non-optimal action to bound the
overall regret as shown in Theorem 1. The detailed proof
can be found in Appendix C.

VII. EXPERIMENTS

In the following section, we present simulated results of
our algorithm in for quadcopter path-tracking. The source
code for the simulation can be found in the supplementary
material. The quadcopter simulation is developed on top of
the source code of [26]. We show that the proposed algorithm
does converge to the optimal policy in very short order and
generates the corresponding regret.

A. Mud Walk Navigation

We examine how our proposed algorithm performs in a
navigation problem. In this problem, the agent is navigating
on a 21 × 21 grid with a pre-defined path Pm. The reward

function r is defined as follows:

rmh (s, a) =


1 s = destination
−0.1 s ∈ Pm

−10 otherwise

In other words, the reward function encourages the agent to
get to the destination as fast as possible while staying on
the path, as there is a large penalty for being off-path. There
are two MDP’s, the maps of which are shown in Figure 1.
The agent has 5 actions (up/down/left/right/stay). In MDP
1, there is a 0.05 chance that the agent will move to one
of its four neighboring states with uniform probability; 0.95
chance of moving to a state indicated by the action. Similarly,
in MDP 2, there is a 0.1 chance that the agent move to
one of its four neighboring states with uniform probability.
After 10,000 trials, the reward of taking the optimal policy
averages to 432.55, and our algorithm has an average reward
of 430.22. That means the meta-learning result arrives 2 steps
later than the optimal policy on average.

Fig. 1: The two maps of Mud Walk problem are shown
above. The agent navigates from the gray square to the
star(destination) while trying to stay on the path shown in
green.

B. Quadcopter path tracking
In this section, we show that our algorithm successfully

identifies the weight of a quadcopter and applies a controller
to follow a given track with bounded error. In this simulation,
we only vary the weight of the quadcopter, but the algo-
rithm easily generalizes to different dimensions and types of
drones.

There are ten possible quadcopter, each with mass m ∈
{1kg, . . . , 10kg}. The ground truth quadcopter has mass 1
kg. Each quadcopter has a PID controller that tracks a path
with 5 waypoints, as shown in Figure 2. Each PID controller
takes in the weight of the quadcopter, so the height and
velocity of the quadcopter will not be correctly maintained
if the wrong controller is chosen. Our algorithm needs to
choose between two policies, determine the ground truth
MDP, and use the correct controller.

Fig. 2: The above figure shows one trajectory of our al-
gorithm choosing between the ground-truth controller and
another PID controller, which assumes the weight of the
quadcopter is 5 kg. The green trajectory is the desired
trajectory of the ground-truth controller, defined by the
5 waypoints. The blue trajectory is the trajectory of the
quadcopter under our algorithm. We see that there is a small
gap at the start of the trajectories, but they mostly coincide
for the latter parts.

Fig. 3: The above figure shows the deviation from the optimal
trajectory when the algorithm takes in different controller
pairs.

We can see in Table I, that the regret is indeed inde-
pendent of the distance between the sub-optimal controller
and optimal controller, in this case, differentiated by weight.
As shown in Figure 3, the tracking errors of the adaptation
algorithms are relatively large in the first 2.5 seconds, but
they quickly diminish and converge to the tracking error of
the ground-truth controller. Therefore, although the regrets
shown in Table I are relatively high, they would quickly
diminish to 0 as the time horizon increases, as demonstrated
in Theorem 1 earlier.

Controller regret
mass assumed by
the non-ground-
truth PID controller
(kg)

proposed algorithm
regret as %

EXP3 regret as %

2 20.49± 7.17 79.93± 9.64
3 27.54± 13.53 81.33± 9.28
4 33.51± 16.63 81.41± 9.30
5 30.94± 23.50 79.20± 9.47
6 28.41± 18.87 79.66± 8.91
7 30.50± 20.21 80.81± 10.45
8 28.61± 20.01 78.48± 8.20
9 26.46± 18.05 79.60± 9.12
10 26.50± 21.72 80.44± 8.88

TABLE I: The average regret and standard deviation of the
tracking error of the quadcopter.

VIII. CONCLUSION

In this work, we proposed an algorithm for fast adaptation
to potentially dissimilar environments and offered a provable
regret guarantee. We also showed that our regret bound does
not depend on the diversity of the MDP’s we adapt to.
In the future, we intend to extend this work to constraint
meta RL and develop an algorithm that can adapt to the
optimal MDP with provable guarantees on both regret and
constraint violation. Another direction that we aim to study
is to integrate our study with existing learning algorithms. In
this work, we assumed the reward and transition probability
for each MDP is given and accurate, but, in practice, there
is usually an error bound on those estimations. It is also
important to analyze how those estimation errors would
affect our algorithm.

REFERENCES

[1] A. P. Aguiar and J. Hespanha, “Logic-based switching control for
trajectory-tracking and path-following of underactuated autonomous
vehicles with parametric modeling uncertainty,” vol. 4, pp. 3004 –
3010 vol.4, 01 2004.

[2] L. Meng, E. R. Sanseverino, A. Luna, T. Dragicevic, J. C. Vasquez,
and J. M. Guerrero, “Microgrid supervisory controllers and energy
management systems: A literature review,” Renewable and Sustainable
Energy Reviews, vol. 60, no. C, pp. 1263–1273, 2016.

[3] R. Bellman, Adaptive Control Processes: A Guided Tour. Princeton
University Press, 1961.

[4] M. Gevers, “Identification for control: From the early achievements
to the revival of experiment design*,” European Journal of Control,
vol. 11, no. 4, pp. 335–352, 2005.

[5] U. Forssell and L. Ljung, “Some results on optimal experiment
design,” Automatica, vol. 36, no. 5, pp. 749–756, 2000.

[6] H. Hjalmarsson, M. Gevers, and F. de Bruyne, “For model-based
control design, closed-loop identification gives better performance,”
Automatica, vol. 32, no. 12, pp. 1659–1673, 1996.

[7] J. Hespanha, D. Liberzon, and A. Morse, “Overcoming the limitations
of adaptive control by means of logic-based switching,” Systems and
Control Letters, vol. 49, pp. 49–65, May 2003.

[8] P. Rosa, J. Shamma, C. Silvestre, and M. Athans, “Stability overlay
for adaptive control laws applied to linear time-invariant systems,”
pp. 1934 – 1939, 07 2009.

[9] L. Liu and X. Yang, “Robust adaptive state constraint control for
uncertain switched high-order nonlinear systems,” IEEE Transactions
on Industrial Electronics, vol. 64, no. 10, pp. 8108–8117, 2017.

[10] P. Garcı́a, J. P. Torreglosa, L. M. Fernández, and F. Jurado,
“Optimal energy management system for stand-alone wind tur-
bine/photovoltaic/hydrogen/battery hybrid system with supervisory
control based on fuzzy logic,” International Journal of Hydrogen
Energy, vol. 38, no. 33, pp. 14146–14158, 2013.

[11] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel, “Rl2: Fast reinforcement learning via slow reinforcement
learning,” 2016.

[12] L. Li, Y. Huang, and D. Luo, “Improved context-based offline meta-rl
with attention and contrastive learning,” CoRR, vol. abs/2102.10774,
2021.

[13] S. Flennerhag, Y. Schroecker, T. Zahavy, H. van Hasselt, D. Silver, and
S. Singh, “Bootstrapped meta-learning,” CoRR, vol. abs/2109.04504,
2021.

[14] A. Fallah, A. Mokhtari, and A. Ozdaglar, “On the convergence
theory of gradient-based model-agnostic meta-learning algorithms,” in
AISTATS (S. Chiappa and R. Calandra, eds.), vol. 108, pp. 1082–1092,
PMLR, 2020.

[15] Y. Song, A. Mavalankar, W. Sun, and S. Gao, “Provably efficient
model-based policy adaptation,” CoRR, vol. abs/2006.08051, 2020.

[16] M. Khodak, M. Balcan, and A. Talwalkar, “Adaptive gradient-based
meta-learning methods,” CoRR, vol. abs/1906.02717, 2019.

[17] K. Chua, Q. Lei, and J. D. Lee, “Provable hierarchy-based meta-
reinforcement learning,” AISTATS, 2021.

[18] Y. Song, A. Mavalankar, W. Sun, and S. Gao, “Provably efficient
model-based policy adaptation,” in ICML, vol. 119, pp. 9088–9098,
2020.

[19] Y. Li, J. A. Preiss, N. Li, Y. Lin, A. Wierman, and J. Shamma,
“Online switching control with stability and regret guarantees,” in
L4DC (N. Matni, M. Morari, and G. Pappas, eds.), vol. 211, pp. 1138–
1151, Mar. 2023.

[20] I. Al-Shyoukh and J. S. Shamma, “Switching supervisory control
using calibrated forecasts,” IEEE Transactions on Automatic Control,
vol. 54, no. 4, pp. 705–716, 2009.

[21] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and
R. Hadsell, “Learning to navigate in complex environments,” CoRR,
vol. abs/1611.03673, 2016.

[22] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in ICML, vol. 70, p. 1126–1135,
2017.

[23] G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen, “Breaking the sample
size barrier in model-based reinforcement learning with a generative
model,” in NeurIPS, (Red Hook, NY, USA), 2020.

[24] Y. Wu, W. Zhang, P. Xu, and Q. Gu, “A finite-time analysis of two
time-scale actor-critic methods,” in NeurIPS, (Red Hook, NY, USA),
Curran Associates Inc., 2020.

[25] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Society for
Industrial and Applied Mathematics, vol. 42, 04 2001.

[26] John, “Quadcopter simcon.” https://github.com/bobzwik/
Quadcopter_SimCon, 2023.

https://github.com/bobzwik/Quadcopter_SimCon
https://github.com/bobzwik/Quadcopter_SimCon

APPENDIX

In this section, we prove that the meta-learning regret of our algorithm is indeed sublinear. Our proof has two steps. First,
we prove that the regret of the EXP3 algorithm on the observation error ϵ̃ is sublinear in expectation. In the second step,
we prove that a sublinear regret of the EXP3 algorithm leads to a sublinear meta-learning regret RH .

A. Proof of Lemma 1

For simplicity of proof, we first introduce two new notations:

ϵ̄mh :=E
[
ϵ̃mh |sh, ph

]
(9)

ϵmh :=E
[(

rmh (sh, ah)− rm
∗

h (sh, ah)
)2

+ ⟨Pm∗
(·|sh, ah), ρm

∗
(·|sh, ah)− ρm(·|sh, ah)⟩|sh, ph

]
(10)

We will show that ϵmh is the unbiased observation error and equals to 0 when m = m∗ and prove the optimality of πm that
minimizes E[ϵ̃mh].

Proof: (Proof of Lemma 1) First, we express the expectation of the observation error by taking expectation of (2) and get

ϵ̄mh = E
[
ϵ̃mh |sh, ph

]
=E
[(

rmh (sh, ah)− rm
∗

h (sh, ah)− wh

)2
+
∑
s′∈S

Pm∗
(s′|sh, ah)(1− ρm(s′|sh, ah))|sh, ph

]
=E
[(

rmh (sh, ah)− rm
∗

h (sh, ah)
)2

+ w2
h + 1−

∑
s′∈S

Pm∗
(s′|sh, ah)ρm(s′|sh, ah)|sh, ph

]
=ϵmh + E

[
w2

h +
(
1−

∥∥∥Pm∗
(·|sh, ah)

∥∥∥
2

)
|sh, ph

]
, (11)

where
∑

s′∈S Pm∗
(s′|sh, ah)ρm

∗
(s′|sh, ah) is written in inner product form, i.e.∑

s′∈S
Pm∗

(s′|sh, ah)ρm
∗
(s′|sh, ah) = ⟨Pm∗

(·|sh, ah), ρm
∗
(·|sh, ah)⟩ =

∥∥∥Pm∗
(·|sh, ah)

∥∥∥
2
.

The second term of (11) does not depend on the choice of m, and ϵmh can be further expanded as follows:

ϵmh =E
[(

rmh (sh, ah)− rm
∗

h (sh, ah)
)2

+ ⟨Pm∗
(·|sh, ah), ρ

m∗
(·|sh, ah)− ρm(·|sh, ah)⟩|sh, ph

]
=E

[∑
m′∈M

ph(m
′)
((

rmh (sh, π
m′
h (sh))− rm

∗
h (sh, π

m′
h (sh))

)2

+ ⟨Pm∗
(·|sh, πm′

h (sh)), ρ
m∗

(·|sh, πm′
h (sh))

− ρm(·|sh, πm′
h (sh))⟩

)
|sh, ph

]
. (12)

Intuitively, ϵmh is the true observation error, and ϵ̃mh is the summation of ϵmh and noise from both reward and transition.

We see that for each m′ term, (12) is minimized with m = m∗, as both
(
rmh (sh, π

m′

h (sh))− rm
∗

h (sh, π
m′

h (sh))
)2

and

⟨Pm∗
(·|sh, πm′

h (sh)), ρ
m∗

(·|sh, πm′

h (sh)) − ρm(·|sh, πm′

h (sh))⟩ are minimized at m = m∗. The former by quadratic
function, and latter by Cauchy-Shwarz inequality, as ρm is a normalized unit vector, the inner product between Pm∗

and
ρm will be maximized when the two vectors are aligned, which is achieved when m = m∗. Therefore, by tower property
of expectation, we have proved m∗ = argminm∈M E[ϵ̃mh]. □

B. Proof of Theorem 2

Proof: (Proof of Theorem 2) Define Φh as follows:

Φh =
1

η
log

 ∑
m∈M

exp(−ηSm
h)

 . (13)

In particular, we have the following conditions:

Φ0 =
1

η
log |M|, (14)

ΦH =
1

η
log

 ∑
m∈M

exp(−ηSm
H)

 ≥ 1

η
log
(
exp(−ηSm∗

H)
)
= −Sm∗

H . (15)

In (15), we used that log is monotonically increasing and exp(−ηSm
H) > 0 for all m ∈M. Furthermore, recall that

ph+1(m) =
exp

(
−ηSm

h

)∑
m′∈M exp

(
−ηSm′

h

) . (16)

We then bound the gap between Φh and Φh−1 as follows:

Φh − Φh−1 =
1

η
log

 ∑
m∈M

e−ηSm
h

− 1

η
log

 ∑
m∈M

e−ηSm
h−1


=
1

η
log

∑
m∈M e−ηSm

h−1e−ηϵ̃mh∑
m∈M e−ηSm

h−1

=
1

η
log

∑
m∈M

ph(m)e−ηϵ̃mh (17)

≤1

η
log

∑
m∈M

ph(m)

(
1− ηϵ̃mh +

η2

2
(ϵ̃mh)

2

)
(18)

≤1

η
log

1− η
∑

m∈M
ph(m)ϵ̃mh +

η2

2

∑
m∈M

ph(m) (ϵ̃mh)
2

 (19)

≤−
∑

m∈M
ph(m)ϵ̃mh +

η

2

∑
m∈M

ph(m) (ϵ̃mh)
2
. (20)

In (17), we used (16). In (18), we used a variant of Taylor’s expansion, i.e. ∀α ≥ 0, e−α ≤ 1−α+α2/2. In (20), we used
∀α ≥ 0, log(α) ≤ α− 1.

We take a telescoping sum from h = 1 to H ,

ΦH − Φ0 =

H∑
h=1

(Φh − Φh−1) ≤ −
H∑

h=1

∑
m∈M

ph(m)ϵ̃mh +
η

2

H∑
h=1

∑
m∈M

ph(m) (ϵ̃mh)
2
.

Take the expectation of the above summation leads to

E [ΦH − Φ0] ≤E
[
−

H∑
h=1

∑
m∈M

ph(m)ϵ̃mh +
η

2

H∑
h=1

∑
m∈M

ph(m) (ϵ̃mh)
2

]

≤E
[
−

H∑
h=1

E
[∑
m∈M

ph(m)ϵ̃mh |sh, ph
]
+ (5 + 4C + C2)2η

H∑
h=1

∑
m∈M

ph(m)

]
(21)

≤−
H∑

h=1

E
[
E
[∑
m∈M

ph(m)ϵ̄mh |sh, ph
]]

+ (5 + 4C + C2)2ηH (22)

=−
H∑

h=1

E
[
ϵ̄mh

h

]
+ (5 + 4C + C2)2ηH. (23)

In (21), we bounded (ϵ̃mh)2 with Assumption 2 and (2) as follows:

(ϵ̃mh)2 ≤ ((2 + C)2 + 1)2 ≤ (5 + 4C + C2)2.

In (22), we used tower property and (11). We are now ready to bound the regret of the cumulative error of prediction.

E [RH] =E

∑
h

ϵ̃mh

h − Sm∗

H

 (24)

≤E

∑
h

ϵ̃mh

h +ΦH

 (25)

≤Φ0 + (5 + 4C + C2)2ηH (26)

≤ log |M|
η

+ (5 + 4C + C2)2ηH. (27)

where in (24) we took expectation of (8), in (25) we substituted (15), and in (26) we subtracted (23). By picking

η = 1
5+4C+C2

√
log |M|

H , we get the bound in Theorem 2. □

C. Proof of Theorem 1

Given the regret bound in Thereom 2, we can use this to upper bound the number of mistakes the algorithm makes in
the following theorem.

Theorem 3: Let k denote the number of mistakes the algorithm makes, i.e.

k :=

H−1∑
h=0

1(mh ̸= m∗), (28)

then
E[k] ≤ E [RH]

c2
.

Proof: We connect the expected ϵ̃-error regret RH to the number of wrong predictions we made in the trajectory.

E [RH] =E

 H∑
h=1

ϵ̃mh

h − Sm∗

H


=E

 H∑
h=1

ϵ̃mh

h −
H∑

h=1

ϵ̃m
∗

h


=E

[
H−1∑
h=0

(
ϵmh

h + E
[
w2

h + (1−
∥∥∥Pm∗

(·|sh, ah)
∥∥∥
2
)|sh, ph

])
−

H−1∑
h=0

(
E
[
w2

h + (1−
∥∥∥Pm∗

(·|sh, ah)
∥∥∥
2
)|sh, ph

])]

=E

H−1∑
h=0

ϵmh

h


≥E

c2 H−1∑
h=0

1(mh ̸= m∗)

 . (29)

where we simply substituted (7) and (11) in (8) and cancelled out the noise term in ϵ̃mh

h . In (29), we used Assumption 4,
which guarantees that ϵmh > c2 for all m.

From the above, the theorem statement follows naturally. □

We are now ready to prove Theorem 1.
Proof: (Proof of Theorem 1) Therefore, let {h1, · · · , hk} represent the time steps Algorithm 1 made the wrong prediction
(mh ̸= m∗). In addition to the distribution of the trajectory (sh, ah) at time h of our proposed approach, we also define
a series of other trajectories for each i ∈ {0, . . . , k}: {(sih, aih)}h=0,...,H defined as for h ≤ hi,(sih, a

i
h) = (sh, ah); after

hi, the trajectores are generated following πm∗
. Intuitively, {(sih, aih)}h=0,...,H makes the same first i mistakes with our

trajectory and then follows by the optimal policy. It is clear that {(s0h, a0h)}h=0,...,H is a trajectory generated by the optimal
policy, so we can write the expected regret RH as follows:

RH =E
[H−1∑

h=0

rm
∗

h (s0h, a
0
h)−

H−1∑
h=0

rm
∗

h (sh, ah)

]
(30)

=E
[H−1∑
h=h1

rm
∗

h (s0h, a
0
h)−

H−1∑
h=h1

rm
∗

h (sh, ah)

]
(31)

=E
[H−1∑
h=h1

rm
∗

h (s0h, a
0
h)−

H−1∑
h=h1

rm
∗

h (s1h, a
1
h) +

H−1∑
h=h1

rm
∗

h (s1h, a
1
h)−

H−1∑
h=h1

rm
∗

h (sh, ah)

]
(32)

=E
[
V m∗

h1
(sh1)−Qm∗

h1
(sh1 , ah1)

]
+ E

[H−1∑
h=h2

rm
∗

h (s1h, a
1
h)−

H−1∑
h=h2

rm
∗

h (sh, ah)

]
(33)

=

k∑
i=1

E
[
V m∗

hi
(shi)−Qm∗

hi
(shi , ahi)

]
(34)

≤ d
E [RH]

c2
. (35)

In (30), we plug in (1) and use the fact that {(s0h, a0h)}h=0,...,H is a trajectory generated by the optimal policy. In (31),
we used (sh, ah) = (s0h, a

0
h) are the same for h < h1. In (32), we added and subtracted

∑H−1
h=h1

rm
∗

h (s1h, a
1
h). In (33), we

substituted in (5) and (3). We repeat (30)-(33) to get (34). Using Assumption 3, we get (35). Applying Theorem 2 to (35)
gives the result in the theorem statement. □

D. Proof of irreducible, aperiodic MDP has bounded advantage function

In this section, we prove that the advantage function of a MDP is bounded if it is irreducible and aperiodic under the
optimal policy.

Proposition 1: Assumption 3 is satisfied if the MDP is irreducible and aperiodic under the optimal policy.
Proof: Let A denote the transitional probability under the optimal policy. Given any (sh, ah) ∈ S × A and the optimal
action a∗h, where ah ̸= a∗h, let ν denote the state distribution of sh+1 if the agent takes action a∗h, and let ν′ denote the
state distribution of sh+1 if the agent take action ah. Then, there exists ρ ∈ (0, 1), such that the advantage function can be
bounded as follows:

Aπm∗
,m∗

h (sh, ah)

=Qπm∗
,m∗

h (sh, ah)− V πm∗
,m∗

h (sh)

=(rh(sh, ah)− rh(sh, a
∗
h)) + Es∼ν [Vh+1(s)]− Es∼ν′ [V (s)] (36)

=(rh(sh, ah)− rh(sh, a
∗
h)) +

H−h∑
i=1

(
Es∼Aiν,s′∼Aiν′ [rh+i(s, π

∗(s))− rh+i(s, π
∗(s))]

)
(37)

≥− 1−
∞∑
i=1

∥∥∥Aiν −Aiν′
∥∥∥

TV
(38)

≥− 1−
∞∑
i=1

Dρi (39)

=− 1− Dρ

1− ρ
, (40)

where ∥·∥TV denote the total variation distance. In (36) and (37), we use the Bellman’s operator. In (38), we use the
assumption that reward takes value in [0, 1]. Furthermore, we use the irreducible and aperiodic assumption, which leads to
the existence of a stationary distribution, so there exists ρ ∈ (0, 1) such that (39) holds. Therefore, we have proven that the
advantage function of an irreducible, aperiodic MDP under optimal policy is indeed bounded. □

	INTRODUCTION
	Contribution
	Related Work

	Problem Formulation
	Notation
	Algorithm Design
	Performance Guarantee
	Proof Outline
	Experiments
	Mud Walk Navigation
	Quadcopter path tracking

	Conclusion
	References
	Appendix
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Theorem 1
	Proof of irreducible, aperiodic MDP has bounded advantage function

